Global solvability of Cauchy–Dirichlet problem for fully nonlinear parabolic systems
نویسندگان
چکیده
منابع مشابه
Solvability Problem for Strong-nonlinear Nondiagonal Parabolic System
A class of q-nonlinear parabolic systems with a nondiagonal principal matrix and strong nonlinearities in the gradient is considered.We discuss the global in time solvability results of the classical initial boundary value problems in the case of two spatial variables. The systems with nonlinearities q ∈ (1, 2), q = 2, q > 2, are analyzed.
متن کاملSolvability of uniformly elliptic fully nonlinear PDE
We get existence, uniqueness and non-uniqueness of viscosity solutions of uniformly elliptic fully nonlinear equations of Hamilton-Jacobi-BellmanIsaacs type, with unbounded ingredients and quadratic growth in the gradient, without hypotheses of convexity or properness. Some of our results are new even for equations in divergence form.
متن کاملCauchy-Neumann problem for a class of nondiagonal parabolic systems with quadratic nonlinearities II. Local and global solvability results
We prove local in time solvability of the nonlinear initial-boundary problem to nonlinear nondiagonal parabolic systems of equations (multidimensional case). No growth restrictions are assumed on generating the system functions. In the case of two spatial variables we construct the global in time solution to the Cauchy-Neumann problem for a class of nondiagonal parabolic systems. The solution i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2015
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2014.07.048